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NON-AXISYMMETRIC SUBMERGED JETS* 

N.I. YAVORSKII 

The generalized multipole approach developed in /l/ for axisymmetric, non- 
selfsimilar submerged jets is extended to the non-axisymmetric case. In 
the case of jets with large asymmetry, a periodic rotation of the direction 
of asymmetry with distance from the jet source by a right angle, is 
predicted. It is shown that the first three terms of the asymptotic 
expansion at the point at infinity obtained in /I/ for axisymmetric jets 
remain valid in the non-axisymmetric case. The influence of the asymmetry 
on the stability of the jet flow and the problems of the convergence of 
the expansions obtained in the axisymmetric case axe discussed. The 
possibility of formulating the problem in a bounded region is indicated 
and its relation to the stability of the flow is shown. 

1. The basic results of /l/ are represented by the following assertions. 
The asymptotic behaviour of non-selfsimilar jets is completely determined bythecharacter- 

istic solutions w,q 
solution v1 obtained 

and the eigenfunctions 

of the Navier-Stokes equations, linearized on the exact selfsimilar 
by Landau in /2/ 

(w, V)v, + (v11 V)w = -Vq + vAw, div w = 0 (1.1) 

(multipoles) depend exponentially on the spherical radius 

w = W (B)li-a, q = Q (6) R-+’ 

where (R, 0, (~1 are spherical coordinates. The exponent a is determined as the eigenvalue 
of the corresponding spectral problem on W, Q which follows from (1.1). 

The first three terms oftheexpansion of stream function Ip have the form 

* = v&J, (3) + vlnIZu (z) + vz (z) + . . ., x = GOS 0 (1.2) 

Yl (3 = 2 g$ 9 A>* (1.3) 

i-AZ 
uW=B(1--23 A(A_zf* , 2 (4 = GM f CfP (4 (1.4) 

where y,(x) is the solution due to Landau /2/ and zl(x) is the analytic solution of the 
linear inhomogeneous equation given in /l/. The unknown constants A,B,c, are obtained by 
specifying the basic integrals of conservation of momentum, flow rate and transverse component 
of the angular moments respectively. 

We can detenaine with the same accuracy the peripheral velocity, i.e. 

w, = CJ* (X)(1 - X*)-'M?-* + . . . . (I.51 

where f,(x)= (1 - z*)(A -x)-‘, and we can find the arbitrary constant c1 by specifying the 
longitudinal component of the angular mo~ntum. 

We find that 
metric problem of 

In this case 

Let 

the same multipolar approach can also be used in the case of a non-axisym- 
non-selfsimilar submerged jets. 
the solution of (1.1) can be written in the form 

w-_z~_OiWv,,,(x)eesm~ t W~~~(~)~~n~~lR~nrn 

Q = v _$, [Qlnm (4 cos mcp -t CL,,,, (4 sin mrpl Kanji,-’ 

'(1.6) 

0.7) 

v+ (2) m sinmcp R-= 
Ji -3 1 

593 
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(1 \‘(I - .12)rlli?Q (d) N-“-l 

For simplicity we have omitted the indices and the summation sign in (1.7). Formally, 
(1.7) resembles the representation of the adjoint Legendre polynomials, and its form is 
governed by the form of the right-hand side of (1.11, so that the functions fY (5), V (X), W (1.), 
Q(z) would be analytic with a chosen inthe corresponding manner. Substituting (1.7) into 
system (l.l), written in a spherical system of coordinates, and eliminating the quantity (I-- 
x”) V” with help of the equation of continuity, we arrive at the following system of equations: 

(1 - 12) ui” = 2 (m ~I- 2) U’ t- [m (m ~j- 1) - (a - 1) (a - 2)] u - (1.8) 

(a T 1) Q + y,U’ j (a + 1) y,‘- = u m; 
F I ( 

y,” 2Yl i--)v 
1 -.cz 

(1 - x2)V’ = (1 - x%)(2 - a)U + mxV + mW 

(I- Lr2)W”= (2n k %a- 4)U + 21" -+ (y, + 2mr)W' f 

[ 
(a-l)y;-* +m(m-I)-cr(a-l)]W-mQ 

(1 - 2”) Q’ = SC (1 - 9) U’ - 2mxU T (yI + mr) V’ -t 

[ 
ay,’ + (2 - m) * + ma - a (a - I)] V - mW’ + mzQ 

- 1 :< .T -( 1 

We could say that Eqs.(l.8) represent the result of the action of a non-selfconjugate 
generalized differential Legendre operator /4/, and therefore analytic solutions exists in 
the neighbourhood of the singularities z = + 1, and the conditions of the boundedness of 
u", v', W", Q’ are equivalent to the demand that the functions be analytic at these points. 
The conditions of analyticity follow from (1.8) in whichthefunction y,(z) is represented 
in the form (1.3) and t == 1 or z == -1. Choosing the parameter a suitably, we can 
continue the solution analytically from the point 2 = 1 up to the point 5 = --1 (or vice 
versa). 

We see from (1.8) that the-conditions of analyticity represent four homogeneous equations 
with seven unknowns U, u', V, V‘, W, W’, Q. Three of them can be specified arbitrarily (and 
it is convenient to choose U, W,Q). ‘I% is agrees completely with the physical formulation 
of the problem of non-selfsimilar jet flow outside a sphere of radius R, on which anarbitrary 
continuous velocity field un. %, ViJ is specified, naturally under the condition that the 
systemsofeigenfunctions {U,rn)nm,l? {V,,K=,. W,,,),"=, corresponding to the eigenvalues a,,,, 

are complete for every asimuthal number m = O,i, 2,..., ~7. 
The latter assertion can be proved for the case when Re = 0 A( = -) where the Reynolds 

numberReis obtained in terms of the total momentum of the jet J /2/ and depends monotonically 
on the constant A from the solution (1.3), and Re-* u as A - +I: 

Indeed, seeking the solutions of (1.8) in the form of the polynomials in .x, U,Q in the 
n-th degree, V in the (n + I)-th degree and W in the (n +- 2)-th degree we find the following 
spectral values: 

a1 = n + nz + 2, cz2 = n + m + 2, cz3 =: n -;- m (1.9) 

a~----n--m-l,a,~=--n-_m-l,~,~;_-n_-ln+~ 

The eigenvalues a,, a2, a3 correspond to the problem of the flow outside the sphere, and 

ah, aSr a8 correspond to the internal problem. Using the exponents a,, . . . ..a6 we can 
construct the solutions in a spherical layer or in any other doubly connected region bounded 
by star-like surfaces. Thus when Re == 0, the eigenvalues are integral and the corresponding 
eigenfunctions are polynomials. From (1.9) we see that for every 171 y 0,1,2,... the family 
of eigenfunctions forms a basis of the space of all polynomials whose completeness in C 1-1, I] 
is well-known. 

When RC>O, the study of the problems of completeness of the eigenfunctions becomes 
very difficult, since the eigenvalues a occur in Eqs.(1.8) in a non-linear manner. There is 
still no rigorous mathematical theory embracing such spectral problems, so we shall restrict 
ourselves to qualitative arguments supported by appropriate numerical results. 

The coefficients of system (1.8) and the momentum J(A) are analytic with respect to the 
parameter O< 1/A< 1. From this we can naturally predict, by analogy with the known theorems 
on the parametric dependence of solutions of the systems of ordinary differential equations, 
a continuous dependence (piecewise differentiable at 0< Re< ~1 of the eigenfunctions on 
Re, regarded as a parameter for 0 :< He < ~0. In this case the number of eigenfunctions and 
their linear independence will be preserved at least in some neighbourhood of the point Ro = 0, 
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and we will have no reason to assume that the completeness of the systems of eigenfunctions 
will be lost in this neighbourhood when Re increases from zero. It should be noted that the 
eigenvalues anm will also become functions of the Reynolds number and both the eigenfunctions 
and eigenvalues may take complex values. Numerical calculations confirm the continuous (and 
possibly piecewise differentiable) relationship a,,(Re) (Fig.l-4) together with the cor- 
responding eigenfunctions u,,, (r, Re), V,, (x, Re), W,,, (2, R4, Qnm 6~ Re). 

The Runge-Kutta-Meerson method was used to carry out the computations with a relative 
accuracy of 10°5, according to the following scheme. Starting from the singularities 5= fl 
of system (1.8) of sixth-order equations, we construct the triads of linearly independent sol- 
utions Ul* (z), U,* (x), U,* (5) where 6 is the vector U = 117, U', 1-, A', W', QIT, up to some matching 
point ze, --1<s,<l situated within the region of the steepest gradients of the function 
required. The condition of analyticity of the solution is 

c,+U1+ (2,) + c2+u2+ (2,) + c,+u,+ (z,) = cl-c,- (5,) i_ cs-ti,- (.rc)+ 
++U,- (G) 

The necessary condition for a non-trivial solution ck*(k= 1,2,3) of this system to exist 
is, that the sixth-order determinant 

should vanish. 
A (a,Re,m) = 1 U~+U~+LJ~+U,-L~-I'~ 1 

0 25 so 

Fig.1 

2 !I 
0 15 Re so 

Fig.2 

Ima 

0 25 Re 50 

Fig.3 Fig.4 

The equation yields the spectral values a,,(Re,m). We see that the eigenvalues do not 
depend on xc, since the matching of solutions at the point ze produces an analytic solution 
everywhere within the region --1 <~61. 

It should be noted that when Re=O, it follows from (1.9) that for every m the 
spectrum is a = m.m + 1,m + 2, and c=m is the singly, while CL= m+ 2,m+3,. aretriply 
degenerate eigenvalues. When a=m-ti,m>O, the solution is doubly degenerate, although one 
might have deduced from (1.9) that no degeneracy exists. The "supplementary" solution is a 
solution of the form U= QEO. V(z) is a zero-order polynomial and W(r) of the first order, 
and this was not taken into account when constructing the solutions in the form of polynomials, 
and in deriving (1.9). When a>O, no other solutions exist. When Re>O, the degeneracy 
is removed and some of the eigenvalues remain real, while others form complex conjugate pairs. 

Fig.1 shows therealexponents for the case m = 1 as a function of the Reynolds number. 
The straight line 1 which corresponds to a(Re)=2 and curve 2, from two real branchesgenerated 
by the double eigenvalue a= 2 at Re= 0. Curve 3 represents a unique real branch of a triply 
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degenerate eigenvalue a= 3 at He -0, whose other two branches form a complex conjugate pair 
(Fig.2). The exponent a (HI,) shown by curve 4 has two cusps a and b, and a more complex 
origin (see Fig.3). 

Curve 1 in Fig. 2 Cm-= 1) represents the real part , and.curve 2 the imaginary part of the 
eigenvalue of the complex conjugate pair corresponding to a -= 3 at Hc 0. 

Fig.3 (m- 1) demonstrates the fairly complex changes undergone by the exponent as the 
Reynolds number increases. The dot-dash line showsthereal eigenvalue corresponding to curve 
4 in Fig.1. When Rc-0, one real branch (curve 1) and two complex conjugate branches (not 
shown in the figure) depart from the point n m: 4. Similarly, when Rr- (I, one real branch 
(not shown in the figure) departs from the point a-5, together with two complex conjugate 
branches whose real part is represented by curve 2, and imaginary part by curve 3. The complex 
conjugate pair merges at point a generating two real exponents (curves 4 and 5). At point b 
two real exponents (curves 1 and 5) merge and a complex conjugate pair is generated whose real 
partisdescribed by curve 6 and imaginary part by curve 7. At point c the complex pair is 
transformed into a real pair of exponents (not shown in the figure). 

Fig.4 shows the relations a(Hc) for the azimuthal number rli 2. Curve 1 corresponds to 
the real exponent emerging from the non-degenerate eigenvalue a-2 at Re = I,. Curves 2 
and 3 represent real branches of the double eigenvalue a 7: 3 at II<, o. At point a the two 
real exponents merge (curves 1 and 2) and a complex conjugate pair is generated whose real 
part is described by curve 4 and imaginary part by curve 5. 

The presence of complex exponents of the spherical radius R in expansion (1.6) is import- 
ant for understanding a number of physical effects (see Sect.3). 

2. The velocity profile in the exact selfsimilar formulation of the laminar submerged 
jet should have the form /5/ 

v = vR_'V (e, (p) 

The Landau solution (1.3) refers to a class of flows in which V = V (fj). The problem 
arises of the existence of asymptotically non-axisymmetric submerged jetswhen V = V(0,cp). Such 
solutions are admissible in the linear approximation to the non-axisymmetric case. Indeed, 
when m=l, (1.9) implies that Eqs.(l.8) have a solution when a=l and Re=O(n=O).An 
exact solution of (1.81 for a = 1, m = 1 and any Re can be found by assuming that the func- 
tions U, V, W, Q are polynomials with respect to the variable l/(A -LX). The required sol- 
ution is 

'(r)= (A:=)' 3 ‘(‘)= 1 A 1 ~--__ 
(A - I)d A”- 1 .4-z 

(2.1) 

w(r)=--=, 1 1 Q @I=== (A 4 
2A 1 

- - A"-1 (A--r)" 

It can be shown that solution (2.1) is consistent in the sense that the next approximation 
obtained by iteration over the non-linearity has a solution. Solution (1.3) corresponds to 
the case when the z axis coincides with the axis of the jet. 

Let the axis of the jet not coincide with the s axis and be directed along the unit 
vector 't = (sin B0 cos 'pO, sin t3 ,sin 'pO, cos9,). We denote the unit vector of the spherical system 
of coordinates 0 (R, 0, CP) constructed relative to the Cartesian system of coordinates x, y,z 
by nR, nl, n,, and by na', ne', nrp' the unit vectors of the spherical system of coordinates 
0' (R,O', cp') constructed relative to the Cartesian system of coordinates z', y', z' whose z' 
axis is directed along r and whose origin of coordinates coincides with the point 0. In this 
case we have 

nH = nR’, (no, ne’) = - cos $I, (no, n,‘) = sin II, (2.2) 

Using Landau's results (1.3) /2/, we obtain the exact solution of the Navier-Stokes 
equations in the O(R,e,cp) system of coordinates 

I 
2v sin 9' 2v 

ve=R A-c.cosW cos*, 
l?,=-7 

(2.3) 

It can be shown that the following relations hold: 

cos 8’ = cos e cos eO + sin e sin eO cos (q - cp,) 
cos eO = cos e ~09 8’ + sin e sin 8’ cosq 

(2.4) 

and they can be used to obtain the solution (2.3) in the 0 (R,e,cp) system of coordinates. 
In the case when 8,<1, i.e. when the amount of axial asymmetry is small, we have from 

(2.3) and (2.4) 
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I2.5) 

which agrees, apart from the numerical multiplier 2 (~2 - t)eo, witb solution (2.1). From 
this‘we can conclude that the Landau solution represents, in fact, a unique principal term of 
the asymptotic expansion in the non-axisymmetric formulation of the problem also. A solution 
of Eqs.(l.8) at a = 2,m = I and all values of the Reynolds number can be obtained in the 
same manner from the asymptotic representation (1.2)-(1.4) written in the ~O'(H,U', rp') system 
of coordinates as B. -+ 0. Thus we see from the results of the computations given in Sect.1, 
that the contribution of the non-axisymmetric additions is given by the terms of the expansion 
with exponents a> 2. 

Thus when R--W, the jet becomes axisymmetric and the asymptotic representation of 
the solution (1.2)-(1.4) remains validin the non-axisymmetric case also. 

3. When the solution is given in the form (1.6), it does not satisfy the complete Navier- 
Stokes equations. We can use the expansions (1.61, as was done in /l/, to construct a general 
solution of the Navier-Stokes equations (under the condition that the sat of eigenfunctions 
{w,q} is complete in C I--1,1] (O,< e< n), and this is assumed), if we carry out the expansion 
over a more complete set of exponents. This set will include, in particular, the powers which 
appear when (1.6) is substituted into the non-linear terms. Such a family of powers must have 
a group property, namely that the linear and non-linear terms yield exponents belonging to the 
same family. Additional terms of the expansion appear as solutions of the linear inhomogeneous 
equations whose right-hand side is determined from the known non-linear terms. 

The solution can be written in the form (the summation is carried out in n and m, from 
n = 1, m = 0 to n = Is?,m=-XJ) 

L’~ zzz v 2 (1 - x2)mlaR-rnm@ (mtp) U&f’* (v,,mR) (3.4) 

oe = y 2 (1 - x2)(“,-1)/2 R-@‘nmQ, (mcp) V,,iDT (v,,,,,R) 

~p=~~(l -x~)(n-~)~~R-~~~~(m(~-~))W,~~T(v,R) 

$ = va z] (1 - xr)m/a RTUnni-‘@ (mtp) QnmtPT (v,,R) 

Here 

(3.2) 

(3.3) 

@ (8) = (co+, sin p) 

nt, mi are non-negative integers chosen so that the inequalities &,,<~fn+lm hold, the 

matrices V,,, W,,, Q,, are represented in a form analogous to that of the matrix U,, (3.31, 
and their elements are functions of x. 

The appearance of complex exponents (3.2) in the non-axisymmetric case (3.1) represents 
an important difference between this case andthe,axisymmetric case /l/ of the problem of a 
non-selfsimilar submerged jet. 

One of the physical consequences of this is, that in the case of a strongly asymmetric 
jet terms with m#O will play a major role in the initial segment. In particular, in the 
problem of a jet flowing out of a rectangular opening whose ratio of adjacent sides differs 
strongly from unity, the terms in question will be the terms with m =I 1. The presence of 
complex exponents will lead, firstly, to the appearance of oscillations in the velocityprofile, 
and secondly, as R (or z) increases, the jet will contract with a period 2n/Ima, in the 
direction of the greatest asymmetry (the larger side of the rectangle) and this can be inter- 
preted, on a background of the general widening of the jet flow, as a periodic rotation of the 
jet about its axis by 90°. when the value of R is increased further the velocity profile Will 
be smoothed out and will tend to become selfsimilar. 

What we said above refers to laminar jets. However, the qualitative -type deductions made 
above can also be related to the turbulent jets since the Bussinesq hypothesis of turbulent 
viscosity /6, 7/ can be applied to them. In order to compare the experimental data with the 
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results obtained, it is sufficient to take the experimental value of the turbulent Reynolds 
number Re, = 35 /e/. Experiments /8, 9/ show fairly good qualitative agreement (z’d --2O and 
more) with the characteristic features of the flow shown above for the case of "rectangular" 
jets, and the photograph included in /9/ shows that the period of rotation of the jet is of 
the order of the width of the jet in the initial cross-section, which agrees with the data 
given in Figs.2 and 4 where IIXCC-I. 

Another consequence is related to the problem of the hydrodynamic stability of the jet 
flow. As we have already shown, the contribution of the asymmetry can lead,atsufficiently 
high intensities of asyn-#netric multipoles, to oscillations in the velocity profile. The 
Rayleigh theorem on inviscid hydrodynamic instability at points of inflection of the velcoity 
profile for one-dimensional plane flows is well-known. In the three-dimensional case we have 
its analogue for axisymmetric plane parallel flows. In the general case the criterion of 
hydrodynamic instability loses the Rayleigh formulation, but a change in sign of the velocity 
derivative whose numerical value is not small, can serve as the Source of instability in this 
case. From Fig..? it follows that complex exponents appear when Re 0,and we can conclude 
that strongly asymmetric jets, as well as the classical displacement layer, lose stability 
when the Reynolds number becomes vanishingly small. If on the other hand the asymmetry is 
"moderate", the critical Reynolds number should depend on the degree of asymmetry. 

Thus laminar jets are unstable under fairly strong perturbations and the domain of 
applicability of the solution (3.1)-(3.3) is sufficiently limited (when Ilezl5, the jets 
are unstable under infinitely small perturbations/lO/),although, as has already been shown, 
the proposed generalized multipole approach also finds application in the study of developed 
turbulent jet flows, 

4. We have shown in Sect.1 that the solution of the problem of jet flow represented as 
an expansion in terms of the characteristic hydrodynamic multipoles can be applied to a 
boundary value problem in a two-phase region bounded by star-like surfaces, and in particular 
in a spherical layer, although in this case we must bring in the characteristic solutions 
corresponding to the exponents an,,, with Reala,, <O. As was done in Sect.3, we can formally 

construct a general solution, and in the present case it will be inthe form of expansion (3.1) 
in which the index n varies from ---c to X1 and Ptnm<O if rr(O. If the expansion con- 

verges and shows the required degree of smoothness, it will represent a solution of the 
stationary Navier-Stokes equations for the boundary value problem of jet flows of very general 
form. 

Let us briefly consider the problems of the convergence of series (3.1). Since the 
series in question are power series, in the case of the hydrodynamic problem for the outside 
of a sphere of radius R,,the series (n>o) will converge everywhere in the region R> R, 
provided that they converge when I< -= R,. Thus, if using the representations (3.1) we find 
that it is possible to satisfy the boundary conditions on the sphere 1s .- R,, the represent- 
ations in question will be the solutions of the Navier-Stokes equations in the region in 
question. It remains to clarify the convergence of the series R =:: H,,. In what follows, we 
shall assume for simplicity that the flow has axial symmetry (nL =:: O), although analogous 
results can be obtained in the asymmetric case also. The solution can be conveniently written 
in terms of the stream function /l/ 

((4.3) differs from (4.5) in the constraints imposed on the sums nj and mj),where aj and Yj 
are the eigenvalues of the corresponding spectral problems formulated in /I/. The exponents 
are ordered, as in sect.1, Real Pn < Real pL,+l. Real 5, -(. Real &,+1. Let A,,, B,, M, be the 
intensities of the corresponding multipoles and (A, I, (R,\, ) M,( <c / n”,a> 1, 0 <c < 3i), and 
we shall assume for simplicity that the flow rate is zero. (The case with non-zero flow rate, 
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i.e. when we have terms containing InR, can be dealt with in the same manner). We must 
estimate the contribution of the terms appearing as a result of quadratic non-linearity. The 
terms are proportional to 

Ai, . . . A@, . . . RjpMh, . . . Mk,R1-ail . . R’-aisR’-ajl. . 

. . . &?p'R'-Yk, _ R'-'km . . 

and if the sum Real {(at, - 1) f . . . f (yk,,, - 1)) lies in the interval [N,N + 1), their con- 
tribution when N> 1 can be estimated using the quantity c,/(l f N)", C< Cl< v, Cl = censt 
as the upper limit (see the appendix). From this it follows that the series in question 
converge when R2RRo if the assumptions are sufficiently natural and general. 

It should be noted that when a hydrodynamic problem in a spherical layer or in any other 
similar region is considered, the convergence of series (4.1)-(4.5) becomes open to question. 
If, however, the intensities of the multipoles corresponding to the exponents with negative 
real parts decay exponentially rapidly -(R,IR,)-INI / INla as INI increases, then (see the 
appendix) the complete series will in this case converge. The actual calculation of the 
multipole intensities from the boundary conditions leads to an infinite non-linear algebraic 
system which can be solved by the recurrence method , and to do thiswemust orthogonalize, one 
after the other, the systems of functions y,, ukn. r,. &,, . We may find the process quite time 
consuming, should the approximate numerical solution demand a fairly large number of eigen- 
functions. We find, however, that the contribution of the terms appearing as the result of 
iterations over the non-linear terms is asymptotically small as N-+X (see the appendix; 
it is therefore sufficient to confine ourselves to the solution of the linear problem for 
large N. This considerably simplifies the algebraic system for determining A,, R,. M, and 
indicates that it is well-posed. 

-0,s L/ 

Fig.6 

It should be noted that the choice of the basis in the form of the eigenfunctions is not 
the only possible one for a problem in a bounded region. We can, in principle, consider only 
the Galerkin-type approximations. It would appear however that the most preferable basis is 
that of characteristic multipoles, since it has a clear physical meaning for every term of 
the expansion and this is important when the problem is solved numerically. It is very likely 
thatthe characteristic basis offers the best convergence. In a number of cases it is suf- 
ficient to consider one or two terms of the expansion in order to obtain sufficient physical 
information concerning the solution /ll/. 

The characteristic feature of the axisymmetric solution is that the exponents with i>O, 
i.e., with a positive real part, are real Imczj= Imi'j= 0 /ll/. In the case when i<o, the 
indices aJ will be real when O<Re<Re,. and merge successively when Re 2 Re,= 3.5 (Fig-S) 
forming complex conjugate pairs (Fig.6). This indicates a qualitative rearrangement of the 
flow and its possible instability (see Sect.1). It is interesting to note that the value of 
the critical Reynolds number at which the instability of a circular jet has been observed 
experimentally Re,,=3.7 -4.1 /12/ is very close to the value Re,. At the same time the value 
of the critical Reynolds number found earlier /lo, 13/ using the usual methods of the theory 
of hydrodynamic stability is much greater than the experimental value. 

Appendix. Let us assess the contribution of the terms of expansion (4.1)-(4.5) with 
exponents p'n, 5, lying within the interval (N,N+ I), for sufficiently large N, for the 
problem of jet flow outside the sphere R&l?,. 

Let us assume, for simplicity, that the exponents a,, y, are integers (an = Y" = n). n >O, 
and the flow rate Q is zero, the latter indicated by the corresponding absence of terms with 
I~R from the expansions (4.1)-(4.5). Then the interval shown will contain only a single 
value pN= N (if a,, Y,, are fractional or complex, the estimate obtained below will not be 
changed significantly, and this will be mentioned at the appropriate time). In this case the 



expansions for the velocity and pressure fields will take the form 

where 

satisfy the equations 

(A.1) 

(A.2) 

(A.3) 

The velocity and pressure coordinates are referred to their characteristic values on 
the sphere R = Ro. From (A2) and (A31 we find 

where A-.-' is the inverse Laplace operator. Since the operator LdJk is integral, it can be 
shown that it is bounded in the space of functions v,, (A2) where f,,,i, f,,,$= L,([ - 1,II) 

)1&t I/ < 1/3h Re H, <CC; i, j, k = 1. 2, 3; 0 <h < 17 (A.5) 

and the norm is given by the relations 

From (A41 we conclude, taking (A5) and (A6) into account, that 

n-1 

II f, II d II f,O II + h Re z II f, u II L-l II (A.7) 
1=2 

Putting 

f(a) =IIQ, jjfn" il<co/n"~ a> 1 (A.8) 

we can write, for !,>I, the relation (A7) in integral form where n takes real values 

n-1 
f (n) d co/n’= + h Re 5 dr f(z) f (n + I- I) (A-9) 

2 

The change to an integral relation is even more justified, since as ~-CO, the exponents 

pLn9 5, constructed using the non-integral a~,~~ densely fill the interval W,N + i),N >I 
with a bounded distribution function, and this implies that condition (Ag) will also hold for 
the fractional exponents. In the case of complex exponents the argument n will represent the 
real part of the exponent (the imaginary part leads to the appearance of oscillating multi- 
pliers not exceeding unity in modulus, which can be replaced by unity in the course of con- 
structing the norm). 

Expression (Ag) written as an equality, can be used as the equation for determining the 
upper limit of the function f(n) for large n, and this is wholly sufficient to solve the 
problems of the convergence of the expansions. Indeed, let us strengthen the inequality (Ag) 

f (I) < fo (2) i P f dYf (Y) f (L. -k 1 - Y) (A.lO) 
1 

fa (5) = Cm, Eg <C < X, a)l,r>l,~=hRe>O 

and we have, by definition, f (3) > 0, f (i) 7 0. 
Let a continuous solution g(z) exist of the equation 

g(r) = fo !I) f t's dyg(y) g (+ + 1 -Y) 

1 

It can be shown that g(s)>O. Let us write 

u (z) = f (I) - fi (z). 

(A-11) 

(A-12) 
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From (AlO)-(AlZ) it follows that 

u t-9 < l’s JYU (I/) v (2 -I- 1 - I/) + g (2 + ’ -- Y)l (A.13) 
1 

Therefore u(i)<O. Since the function u(z) is continuous, a number a>i exists such that 

u (2) <o for I<.T<u. Let u(a)=o. Then (A13) will lead to a contradiction 

duu (II) Y (a + I- u) + g (a + I- u)l > 0 
1 

when s(z)<% f(a+i---)+g(a+i--)>O, i<s<~.Thus u(z)<0 for all finite 2. 
ThUS 

f (I) < g (d. 1 < = < m 

Let us write 

o (2 - I) = g (5)* 'PO (2. - 1) = fo (5) 

Then Eq.(All) can be written in the form 

‘P (4 = ‘PO (+) + cc j ducp (I/) q, (z - u) 
0 

We can solve Eq.(~l6) using the Laplace transformation 

Q, (a) = @D, (h) + CL@'2 0.) 

(h.14) 

(A.15) 

(A.16) 

(A.17) 

The quantity 'PO (5) = c/(1 + Z)a; therefore we have /14/ 

@'o (h) = C r (1 - a, %) aa+ (A.18) 

In order to find the asymptotic formula for T(Z) as z-50, it is sufficient to inves- 
tigate the solutions (A17) as h-0. In this case 

@'a (a) = cr (1 - a) a"-'+ o p.=-‘j 
and two roots of (A17) have the form 

oD, = p-1 - @'. (a) + 0 (ab*), CD, = ub (a) f 0 tab?) 
Applying the inverse Laplace transformation we see that as Z--W, the first root is 

'pl (2) = 11-l& (z) - 'PO (z) + 0 (cpo) (A.19) 
and the second root is 

'FI (+) = 'PO (2) + 0 (cpo) (A.20) 

xtfollows from (Al9) thatforsufficientlylarge zthequantity 9, (5) <O, and this is unac- 
ceptable for the norm. Thus the principal term of the asymptotic expansion is given, as 
z-00, by formula (AZO) and is independent of p. Since p = hRe, we can conclude that the 
convergence of the series (4.1)-(4.5) is independent of the value of the Reynolds number Re. 
Nevertheless, we must remember that the intensities of characteristic multipoles depend on Re, 
and the constants co, a in the estimate fo(N)<ce,Nea may, in general, depend on the number me. 
Therefore, we cannot eliminate the possibilty of the existence of such an Re for which the 
conditions a>1 or co<.= might be violated. On the other hand, the principal asymptotic 
term of (A20) indicates that for large values of N the solution is determined by the contri- 
bution of the solution of the uniform problem, while the contribution of the part of the sol- 
ution obtained by iteration over the non-linearities is vanishingly small. 

It can be shown that the estimates discussed above will hold for a very wide class of 
velocity profiles close to the selfsimilar Landau solution. The characteristic asymptotic 
behaviour of the terms of the expansion described above may make the proposed method of con- 
structing the solutions of the Navier-Stokes equations suitable from the practical, compu- 
tational point of view, although the question of whether the proposed expansions are the best 
of all possible expansions remains open. 

It should be noted that in the case of the problem of jet flow in a spherical layer we 
can obtain analogous assertions concerning the convergence of the series (4.1)-(4.5). In 
particular, the inequality (AlO) will be transformed, in the case of a solution on the sphere 
R = R,, to the form 

f (4 < fo (2) i P s dYf (Y) f (= + 1 - Y) 
--a 

(A-21) 
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We can also show that 

! ((1 < i( (.I), DJ \>.i _ 7 

where I: (,i is a continuous solution of the equation 

g(r) = fOLC) t I* s dYi! CY!&T(L ;- f -- !/) 
-a 

When jsJ-?o, we can obtain in the same manner 

f (r) < qfo (.c); ‘I > 1. q = cant 
provided that the Fourier transform I;,,(k) of the function la(z) is such, that ra (n-) -0 as 
I< -. 0. 

The sufficient condition for the series (4.1)-(4.5) to converge in the region I:, *: 0 -_.I(, 
is, that the following integral converges: 

In particular, if 

0<c,<s,a>1 

then the necessary requirements will be satisfied and the series will converge absolutely 
everywhere within the region l/i, [(,I. We should remember that a stronger condition is imposed 
on the asymptotic behaviour of the characteristic multipoles in the case of positive powers 
of the spherical radius R as (N---m or z---m). Therefore, the domain of applicability 
of the proposed expansions for a jet flow in a spherical layer may be narrower j&cording to 
the admissible form of the velocity profiles on the outer sphere, or relative to the number 

Re), than in the case of a boundary value problem outside the sphere. 
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